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SUMMARY 
Numerical simulation by a finite element method is used to examine the problem of the rotating flow of a 
viscoelastic fluid in a cylindrical vessel agitated with a paddle impeller. The mathematical model consists of a 
viscoelastic constitutive equation of Oldroyd B type coupled to the hydrodynamic equations expressed in a 
rotating h e .  This system is solved by using an unsteady approach for velocity, pressure and stress fields. For 
Reynolds numbers in the range 0.1-10, viscoelastic effects are taken into account up to a Deborah number De of 
1.33 and viscoelasticity and inertia cross-effects are studied. Examining the velocity and stress fields as well as the 
power consumption, it is found that their evolutions are significantly different for low and moderate inertia. These 
results confirm the trends of experimental studies and show the specific contribution of elasticity without 
interference of the pseudoplastic character found in actual fluids. 
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1. INTRODUCTION 

Viscoelasticity is widely encountered in many industrial production systems and, because of its 
significant impact on the dynamics, must be taken into account in the design of these processes. High 
viscoelasticity has consequences upon mixing performances, e.g. power consumption or mixing time, 
and at present the accurate prediction of the flow pattern producing these effects is still very difficult. 
An extrapolation of Newtonian or pseudoplastic results will not provide the appropriate solution to this 
problem. Therefore the aim of the present paper is to use numerical simulation to improve the 
knowledge of the physical phenomena involved in these complex situations for which the experimental 
approach does not provide a clear understanding. 

Indeed, the practical problems encountered in the mixing of non-Newtonian fluids have been studied 
experimentally. Most of the experiments deal with pseudoplastic fluids, e.g. the work of Metzner and 
Otto,’ but very few are devoted to viscoelastic fluids. Moreover, concerning viscoelastic fluids, the 
published results seems to be inconsistent. For instance, in laminar flows around Rushton turbines, 
Rieger and Novak’ and Oliver et ~ 1 . ~  have deduced that the viscoelastic flow is less dissipative than the 
corresponding Newtonian flow. In contrast, it was found to be more dissipative by Collias and 
Prud’homme4 for the same impeller and highly elastic fluids, by Brito de la Fuente et ul? for a helical 
ribbon impeller and by Youcefi et aL6 for a paddle impeller. The great diversity of these results arises 
from the great diversity of the fluids used and also of the dynamics of the considered flows. Thus it is 
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important to clearly identify and separate effects of pseudoplasticity and viscoelasticity as well as to 
quantify these parameters for the fluids used in experiments. 

The values measured in these experiments are global ones: power consumption, mixing time or 
circulation time. It is clear that a knowledge of the hydrodynamics in the stirrer is necessary to 
understand and then model the mixing in viscoelastic  fluid^.^ These fluids can modify the Newtonian 
flow patterns and develop large normal stresses, which in turn deeply affect the mixing performances. 
In this respect a numerical study may be useful even if some simplifications are required to define a 
tractable equivalent numerical model. 

Upon inspecting the power nbTber versus Reynolds number graphs:,6 the threshold for which the 
viscoelastic behaviour diverges from the Newtonian one is generally found in the range 1 <Re  < 5. 
Similar observations can be made from other experimental results and thus it seems worthwhile to 
study the cross-effects of viscoelasticity and inertia in homogeneous and isothermal fluids. Numerical 
simulation of these cross-effects has already been tackled by Delvaux and Crochet' for the flow around 
a circular cylinder and by Debbaut' in a circular abrupt contraction where modifications of the flow 
pattern for a given fluid (and elasticity) are shown as the Reynolds number increases in the range 1-50; 
strong modifications are noticed even in a reduced range (Re = 4-1 5) .  In a planar contraction, Choi et 
al." have shown that the corner vortex growth can increase or decrease with increasing Reynolds 
number depending on whether the fluid elasticity is weak or strong. 

To the authors' knowledge, mixing in viscoelastic fluids has not yet been treated numerically. With 
regard to the mixing of inelastic non-Newtonian fluids, Hu et al.," using a finite element method, have 
provided a numerical solution for the two-dimensional flow of a Carreau A fluid in a vessel with an 
anchor impeller. Although they did not compute the power number, they have found modifications of 
the velocity field as the Reynolds number or the power-law index changes. In contrast, for 
pseudoplastic fluids, Bertrand and Couderc" and Lafon13 have observed small changes in the velocity 
field but no modifications of the flow pattern, whereas the power number decreases slightly with the 
power-law index. 

In this work we have conducted a numerical simulation of the isothermal flow of a viscoelastic fluid 
in an agitated vessel with a paddle impeller. The Reynolds number range is fixed in order to introduce 
significant effects while remaining in the laminar regime. Both the Reynolds and Deborah numbers are 
sufficiently low to consider that 3D effects are negligible in such a geometry. Experimental data6 
obtained under analogous conditions seem to confirm these assumptions and can be used for 
qualitative comparison. Furthermore, a 2D approach is more tractable because of the numerous 
difficulties encountered in numerical simulation of viscoelastic flows. 

In Section 2 we present the flow configuration. The basic equations for the problem and the 
numerical method are described in Sections 3 and 4 respectively. Our main results are presented in 
Section 5, which is followed by the conclusions in Section 6.  

2. THE FLOW CONFIGURATION 

This work is mainly concerned with chemical and biological engineering applications. The basic case 
studied is the flow in a stimng tank equipped with a paddle impeller. 

The geometrical configuration in a plane perpendicular to the axis of the tank is shown in Figure 1. 
The radii of the vessel and the impeller are Ro and R1 respectively. The flow computation will be 

performed in a Cartesian h e  moving with the impeller, which rotates at an angular velocity o. The 
Reynolds number will be defined in terms of the rotation frequency N = o / 2 n  and the impeller 
hameter D1. Polar co-ordinates will be used for representing some results in order to compare them 
with experimental data. 
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Figure 1. Flow configuration 

3. THE GOVERNING EQUATIONS 

We solve the incompressible and isothermal flow of a viscoelastic fluid in a domain 9. Our problem is 
then to determine the stress tensor and the velocity and pressure fields. These variables must obey the 
equations of motion and the incompressibility constraint; for closing the system of equations, we need 
the constitutive equation for the fluid, i.e. the relation between dynamics (the stress tensor) and 
kinematics. 

We define the rate-of-deformation tensor D in terms of the velocity field V as 

D = $(AV + AVT). (1) 

The stress tensor 0 is decomposed as 

u = -PI + T * ,  

where p is the pressure and T* is the extra-stress tensor. We use an Oldroyd I3 law as the constitutive 
equation for the fluid. This model includes elasticity without any pseudoplastic behaviour. It is 
characterized by a constant shear viscosity qo and a quadratic first normal stress difference: 

T* + 1B* = 2q0(D + A&. (3) 
Here 1 and 1, are the relaxation and retardation times respectively and the symbol 
upper-convected derivative, which is an objective time derivation for tensors: 

holds for the 

(4) 
a 
at 

B* = -T* + (v'v)T* - vvT* - T*.vVT. 

Equation (3) is used in a slightly different way: T* is decomposed into a Newtonian ( T ~ )  and a 
viscoelastic ( T ~ )  contribution as 

T* = 71 + 7 2 ,  ( 5 )  

= 2~1D.  (6 )  

where 

Since q I  can be any partial shear viscosity, we choose q1 = q o l  
,I1 in order to cancel the coefficient of the time derivative of D in equation (3). We thus limit the order 
of derivation for the velocity field V and the viscoelastic part of the constitutive equation is now 

7 2  + 1 7 2  = 2q,D, 

with q2  = qo(l - &/A). 
In order to simplify the notation, 12 will be called T in the following. 

(7) 
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The stress decomposition (5) is introduced into the momentum equation, which is written in a 
rotating frame with rotational speed w. This equation is associated with the incompressibility 
constraint to give the hydrodynamic model 

v*v = 0, (9) 
where 111 is the antisymetric tensor associated with w and p is the fluid density. In our study the moving 
frame used will be bound to the impeller. 

The stress, velocity and pressure fields are the solution of the coupled system formed by equations 
(5H9) together with appropriate boundary conditions. 

When studying viscoelastic fluid flows, it is usehl to define a measure of the elastic character of 
the flow by a Deborah number. This number arises naturally in the dimensionless equations as 
De=lUdLo, where LO/& must be considered as a characteristic time for the flow while 1 is a 
characteristic of the fluid elasticity. In our application the length Lo and the velocity UO used as 
references are the stirrer radius Ro and the product wR0 respectively, in so far as w is also the rotational 
speed of the impeller. 

Two other dimensionless groups arise in this application: the Reynolds number Re = pN@/qo and 
the characteristic time ratio j? = AJA. 

Talung f l  equal to zero gives the well-known upper-convected Maxwell model. The time ratio j?, i.e. 
the retardation time 1, induces a purely viscous term (ql 0: A,) in the momentum equations and thus 
has a stabilizing effect on the numerical results.'" l6 We have adopted the commonly used value of j?, 
namely f l  = 1 ''*I8 

P 

4. NUMERICAL METHOD 

In a rotating M e  bound to the impeller the unsteady problem of the rotation of the impeller becomes 
a steady problem. Despite the use of this rotating frame for computing, the set of partial differential 
equations (7x9) is treated by a time-marching algorithm, i.e. using a non-steady approach converging 
to a final steady state. This time approach leads to a decoupled problem with the following algorithm. 

Algorithm 

For each time step: 

Step 1. Solve the constitutive equation (7) for T"+ ', keeping V" and p" fixed. 
Step 2. Solve the momentum and mass balance equations (8) and (9) for V"+ ' andp"+', keeping 

Step 3. Check for convergence and start again at the next time step if necessary. 

Since we are not interested in the transient flow and in order to obtain lower computational costs, we 
choose to have no internal iteration at each time step; this results, of course, in an approximate 
description of the transient Bow, which could be reasonably studied, if necessary, by selecting a small 
enough time step. 

For increasing the values of both Re and De, we use a continuation technique, i.e. starting the new 
results with the last ones as initial conditions. The first viscoelastic case is initialized with Navier- 
Stokes results for the velocity and pressure fields and only step 1 is performed at the earlier time 
stations in order to have a suitable initial stress tensor. 

fixed. 7n + 1 
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A semi-explicit Euler time scheme is retained for temporal discretization and the equations can be 
written as follows: for step 1,  

for step 2, 

U + Re -Vp"+' + fi*Cb*OM + 2Cb.V" = 0, 

V.V"+' = 0. (12) 
Here CI = (3/2n)( 1 -p) is a coefficient introduced by the definition of Re and De. 

We use a finite element formulation for calculating the fields T, V and p over the flow domain 9, 
which is discretized by means of Lagrangian quadrilateral elements. In this way, finite element 
interpolations are used for the variables z,, zv and zw from the stress tensor, u and v from the velocity 
field and p. Two different methods are used in this study. In method I ,  in a classical way for 
viscoelastic flows, we choose complete biquadratic shape functions for T and V and complete bilinear 
ones forp. Then a Galerkin method is used to discretize (10x12)  with integration by parts applied to 
the highest-order derivatives in the momentum equations. In method 2, in order to improve the stability 
for high elasticity and inertia, we use a method proposed by Marchal and Crochet,'' based on two 
ideas: the use of upwinding and bilinear subelements for the stresses. The so-called non-consistent 
streamline upwind scheme described by Marchal and Crochet is implemented with a subdivision of 
velocity biquadratic elements into 4 x 4 parts which are bilinear elements for the stresses. 

The previously described algorithm was tested with both methods on Couette flow between 
concentric cylinders and successhlly compared with the analytical solution for this test flow. It was 
then used on the 4 : 1 abrupt contraction where it provided good results up to De = 3 for method 120 
and up to De = 20 for method 2. In the previous study with method lY2O effects of inertia were not 
neglected but remained constant (with Re = 1). On the other hand, a preliminary study of the agitated 
vessel was realized with the Newtonian part of the described algorithm. Calculations were carried out 
for Reynolds numbers from 0.1 up to 40 and successfully compared with experimental results.2' Early 
results for method 1 with viscoelastic fluids in this geometry were carried out in weakly inertial flows 
(Re = 0.1) up to De = 0.2.22 The tests involving method 2 provide the same results as method 1 in this 
case. 

5. VISCOELASTIC FLUID SIMULATION 

5.1. Description of the geometry 

The flow domain, defined in the (x, y )  plane, is limited by the vessel (radius Ro) and the impeller. 
The latter is composed of two lateral plates of length R1 =$Ro and thickness e=0-02Ro and an axial 
cylinder of radius R, = 0.07Ro. 

The finite element mesh M1 used to discretize the flow domain is shown in Figure 2(a); it consists of 
436 velocity elements with a total of roughly 9700 unknowns for method 1 and 25,600 for method 2. 
The critical zones for the flow are located at the tips of the blades where the mesh is refined. 

In order to test the mesh refinement effect, calculations are performed on two different meshes M2 
and M3. Mesh M2 differs from mesh M1 only in the blade thickness. The same geometry is 
maintained between M2 and M3, the latter being refined, especially at the tips of the blades (Figures 
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Figure 2. (a) Finite element mesh M1. (b) Details of mesh M2 at tip of blade. (c) Details of mesh M3 at tip of blade 

2@) and 2(c)). M3 consists of 816 elements with about 17,800 or 47,500 unknowns according to the 
method. 

The boundary conditions imposed on the velocity are wall conditions on the impeller and on the 
outer circular surface. As we choose to work in the rotating frame bound to the impeller, they stand as 
follows: on the impeller, VO = V, = 0; on the vessel, Ve = - wRo and V, = 0. These conditions are 
expressed in Cartesian components (u, v). 

From a mathematical viewpoint there is no complete rule for prescribing boundary conditions for 
viscoelastic flows in the general case. It has been demonstrated by Renardg3 that the problem is 
well posed with Dirichlet conditions for velocity on the boundary 2l- and no conditions on stresses 
for the stationary and weakly inertial flow of Maxwell-type fluids, i.e. with a zero retardation time 1, 
if both input and output fluxes are zero everywhere on the boundary. In the present problem the 
flux conditions at the boundary are realized but the computation is non-stationary and the retardation 
time 1, is non-zero. Despite this fact and in the absence of any further theoretical information 
rigorously adapted to our case, we have considered that Renardy’s conditions are relevant. 
Nevertheless, this choice is reinforced by the results of GuillopC and S a ~ t , ~ ~  showing the well- 
posedness of the problem when analogous conditions are applied to unsteady flows of Oldroyd-type 
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Table I. De- for mesh M1 

Dem, 

Method 1 Method 2 

Re=O.l 0-2 1-33 
Re= 10 0.1 1.33 

fluids. However, these results are only demonstrated in the limit of small Deborah number and small 
parameter a (a = 1 - &'A). 

5.2. Results 

We have used both methods of Section 4 to obtain a steady state solution (method 1,  centred 
Galerkin; method 2, non-consistent streamline upwind). The time step varies from 0.1 for the 
Newtonian case down to 5 x lop4 for poorly convergent viscoelastic cases. For mesh M1 the value of 
the maximum Deborah number obtained, De,,, depends not only on the Reynolds number but also on 
the method, as seen in Table I. 

The values given in this table are obtained with regular increments of the Deborah number for a 
given Reynolds number, adapting the time step to the numerical instabilities. They do not provide 
absolute limits to the method, which could probably be improved with smaller time step or Deborah 
number increments. Nevertheless, the values obtained with method 1 are limited to low inertial effects 
or low viscoelastic effects. For this reason, method 2 was chosen in order to obtain large values of Re 
and De, after having tested the compatibility of both methods in the range of validity of method 1.  

Meshes M2 and M3 were used in order to test the effect of mesh refinement. The comparison was 
done for Re = 10 and De = 1 .  The results are identical between the two given meshes for the 
hydrodynamic field and differ slightly from mesh M1 for which the blade thickness is different. 
However, discrepancies due to the mesh refinement have been found for the stress field but are only 
observed near the blade tips: they are attributed to singularities which generate numerical oscillations 
associated with the size of the mesh. 

Looking at the stresses (expressed in polar co-ordinates), we note important local peaks in the 
vicinity of the tips of the blades as can be seen in Figure 3,  representing the normal stress z, at 
different Re for De = 1.33. A detailed view of the oscillations near the peak value is shown in Figure 4, 
representing z, on the trailing edge for Re increasing from 0- 1 to 10. 

We can observe more precisely the influence of the Reynolds and Deborah numbers by examining 
the profiles for T,, 708 and 7,g near the leading edge of the plate (Figures 5-7). It is not our objective to 
discuss here the detailed variations in the stress field, but it is worth noticing that the Deborah number 
produces large changes in the shape of the peaks for low-inertia flow and that the combined effect of 
De and Re substantially enhances the amplitude of the peaks. Remembering that 7 is the non- 
Newtonian part of the stress tensor, this clearly shows the dependence of the viscoelastic part of the 
extra-stress upon inertia. 

Owing to the coupling between stresses and velocity, large modifications in the velocity field are 
observed in this case. For a better representation, all velocity results obtained in the rotating frame are 
transformed to be expressed in a fixed frame. The tangential component Ve along the impeller plane is 
displayed in Figure 8 for four Reynolds number from 0.1 to 10 and four Deborah numbers from 0 to 
1-33. Two different behaviours are observed in these curves depending on the Reynolds number. For 
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Figure 3. Component ‘t, of stress field (leading edge on right): (a) Re = 0.1, De = 1.33; @) 
Re= 10, De= 1.33 

(4 (b) 
Figure 4. Details of component ‘t,., of stress field at trailing edge for De = 1.33: (a) Re = 0.1; @) 

Re = 1; (c) Re = 10 (identical stress scale for all cases) 
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Figure 5. Stress component 7, on leading edge: (a) Re= 0.1; (b) Re= 10 

Re = 0.1 and 1 the flow velocities in the gap between the blade tip and the wall of the vessel are lower 
than those in the Newtonian case. The variation with the Deborah number is quite obvious for De 5 1 , 
but the difference is less between the velocity profiles for De = 1 and 1.33. The velocity defect is more 
important at Re = 1 than at Re = 0.1. For Re = 5 and 10 and viscoelastic fluids, the velocity profiles in 
the gap are not monotone as in the Newtonian case but present a minimum near the blade tip and a 
maximum when moving towards the wall. In ow case the Reynolds numbers are sufficiently low and a 
stable state can be reached. However, it can be inferred that the inflectional profiles obtained are likely 
to induce shear flow instabilities, which can also limit the range of validity of this steady approach. 
Another effect of viscoelasticity in the high-Re range is the enhancement of the entrainment of fluid in 
the gap, which is the opposite of the behaviour for small Reynolds number. 

The coupled effect of inertia and viscoelasticity affects the whole domain as can be observed in 
Figures 9 and 10, showing the streamlines in a fixed frame. The streamfunction $ is computed from 
the corresponding velocity field in a postprocessing stage. The low-inertia case is represented in 
Figures 9(a) and 9(b). A zone of closed streamlines is observed near the wall and in the prolongation of 
the blade. This zone is nearly symmetrical with respect to the plane of the blade in the Newtonian case 
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Figure 6 .  Stress component Tee on leading edge: (a) Re=O.l;  (b) Re= 10 

(Re = 0.1, De = 0). Viscoelasticity enlarges the surface of this zone and introduces a constant 
dissymmetry with a quite sharp front on the leading edge side and a tail on the trailing edge side. A 
decrease in the flow rate is observed with increasing De. A quite different situation is observed with 
significant inertial effect (Re = 10) as shown by Figures 1O(a) and lO(b). The closed zones linked to 
the impeller no longer exist. In the Newtonian case an increase in the entrained flow rate is observed. 
Viscoelasticity enhances this increase and induces a larger distortion on the streamlines near the 
impeller as well as a more pronounced dissymmetry with respect to the blade plane. These distortions 
and dissymmetry are interpreted as supplementary sources of instability introduced by viscoelasticity 
in inertial flows. An evaluation of the effect of viscoelasticity for different Reynolds numbers in the 
agitated vessel is given in Table 11, representing the maximum value of the streamfkction, I i j  1 -, 
and the entrained flow rate which is the value of the streamfunction reached in the vessel, 1 II/ I (since 
the condition i j  = 0 is imposed on the axis of the agitator). 

Power consumption is one of the most important industrial parameters, not only from economic 
considerations but also because it is used as an indicator of the liquid rheology in mixing systems.' 
The power consumption P resulting from the viscous dissipation all over the flow domain 9 is defined 
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Figure 7. Stress component T,+ on leading edge: (a) Re= 0.1; (b) Re= 10 

as 

P = u: D dv. 

The power number, commonly used in mixing processes, is then 
P 

p N 3 q .  
Np = - 

The computed power numbers are presented in Figure 1 1, which plots the product Np.Re versus the 
Reynolds number for different values of the Deborah number. Such a dimensionless group takes into 
account both inertia and viscosity effects. For a given configuration it was found to present small 
variations for Newtonian fluids as well as for inelastic non-Newtonian fluids, in so far as the Reynolds 
number is calculated taking pseudoplasticity into consideration. 1,6 Our results show two different 
regimes. For the lower Reynolds numbers (Re = 0.1 and 1) the two curves are nearly superposed and 
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Figure 8. F', along impeller and continuation of it 

Figure 9. Streamlines for anticlockwise-rotating impeller at Re = 0.1 (fixed frame): (a) De = 0; (b) De = I .33 
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Figure 10. Streamlines for anticlockwise-rotating impeller at Re = 10 (fixed frame): (a) De = 0; @) De = 1.33 

both exhibit small variations with respect to the Newtonian case; a small decrease to a minimum for De 
between 0-5 and 1 is observed. The variation is less than 10% and of the same order as that for 
Newtonian fluids in the complete Re range studied (0.1 <Re < 10). In contrast, for the higher 
Reynolds numbers it is possible to distinguish between two regions in the curves: for small values of 
De (De < 0.5) there are no significant modifications of the Np.Re dimensionless group, but for larger 
values of De a substantial increase in this group is observed. For the highest calculated value 
(De = 1.33) the power number is increased to nearly 150% of its value for the Newtonian case. 

Some results in the literature concerning experimental approaches confirm the previously observed 
results. Brito de la Fuente et al.,’ Youcefi et aL6 and Carreau et a1.” have observed the same behaviour 
in the variation of the power with respect to the Reynolds number for viscoelastic fluids. Below a 
threshold value in the range 0.1 <Re* < 5 the power number for viscoelastic fluids follows nearly the 
same law as for inelastic fluids, but beyond this value a substantial departure is observed. In our 
numerical simulation with an Oldroyd fluid this effect can be unequivocally attributed to the elastic 
component of the fluid and reveals the importance of the coupled effect of viscoelasticity and inertia. 

When studying cross-effects of viscoelasticity and inertia, Debbaut’ and Choi et a1.” used an 
elasticity number E. The interest of such a parameter lies in the fact that it is characteristic of the fluid 
and the geometry regardless of the flow rate and the regime. This number is defined by E = DeIRe, i.e. 

Another important dimensionless number has been discussed by Joseph et al.26 It represents the 
importance of propagating effects in a viscoelastic fluid and is also related to the presence of 

Table 11. Values of 1 $ 1  - and I $ 1  in the vessel 

Re=O.l Re= I Re=5 
~~ 

Re= 10 

De=O 0.1620 0.1593 0-1625 0.1600 0.1703 0.1700 0.1798 0,1797 
De= 1.33 0.1595 0.1507 0.1622 0.1495 0.1791 0.1791 0.1960 0.1960 
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hyperbolicity in the equation of motion. This number is the elastic Mach number, defined from the 
celerity of the elastic waves, co = d(qdAp), so that M = UO/cO, i.e. 

M = J(27z), /(Re. De).  (16) 
The previous results can be interpreted with respect to the couple (E,  M) rather than (De, Re). In the 

range covered by this study, the values of E and M are more marked by the Reynolds number values 
than by the Deborah number. Thus the second regime characterized by high Re and De corresponds to 
both high Mach numbers and low elasticity numbers. However, completely different flow 
configurations can be found for comparable values of E, e.g. for the couples (De, Re) = (0.1, 1) 
and (De, Re) = (1, 10). In contrast, the elastic Mach number provides a better indicator of the regime 
change. These considerations reinforce the previous observations and show that the differences in the 
flow patterns for a given fluid and geometry, characterized by the value of E, are closely dependent on 
the coupled effects of inertia and viscoelasticity, characterized by the value of M. 

6 .  CONCLUSIONS 

The rotating flow of a viscoelastic fluid in a cylindrical vessel agitated with a paddle impeller has been 
studied numerically using a finite element approach. A time-marching algorithm has been chosen to 
solve the coupled system of fluid constitutive equation and hydrodynamic equations. The latter are 
expressed in a frame moving with the agitator. 

The classical Oldroyd B law is adopted for this simulation, i.e. a viscoelastic but not pseudoplastic 
fluid. Thus in these simulations the effective viscosity of the flow is constant and the Reynolds number 
Re directly represents inertia forces. The non-Newtonian contribution is contained in the elastic part 
which is controlled by the Deborah number De. 

The paper deals mainly with the cross-effects of elasticity and inertia for a given level of viscosity 
upon increasing both De and Re. It is shown that for sufficiently high values of the couple Reynolds 
number-Deborah number, corresponding to high values of the elastic Mach number, the coupled effect 
is much higher than each separated effect. This is evident in the evolution of the power number with 
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respect to the Reynolds number. Obviously the dissipated energy is greater than if only the Reynolds 
number or the Deborah number was increased separately. The results concerning the power number 
depart from the classical relationship for Newtonian inelastic flows. The difference noted within the 
combined inertia-elasticity effect leads to the conclusion that a strong modification of the flow 
structure has occurred. It appears that the modification in the dissipated energy level, which is closely 
linked to the flow pattern and the stress field, is due to the presence of viscoelasticity but emerges only 
through the coupling with inertia. 

The method that has been implemented for this study uses a general-purpose algorithm which is not 
sufficiently sophisticated to overcome all the difficulties of viscoelastic flows. Some specific 
improvements have been implemented, namely the streamline upwind method and the bilinear 
subelements for stresses, but progress is still required both in the numerical method and in the 
constitutive law used for modelling the fluid behaviour. 

Nevertheless, this approach can be considered as a first step for this type of problem. It has the merit 
of enhancing the main characteristics of the inertia-elasticity cross-effect and provides an explanation 
of experimental observations related to global measures of power consumption. 
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